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Abstract—In this paper we study from an algorithmic per-
spective the problem of finding the peak value of a bandlimited
signal. This problem plays an important role in the design
and optimization of communication systems. We show that
the peak value problem, i.e., computing the peak value of a
bandlimited signal from its samples, can be solved algorithmically
if oversampling is used. Without oversampling this is not possible.
There exist bandlimited signals, for which the sequence of
samples is computable, but the signal itself is not. This problem
is directly related to the question whether there is a link
between computability in the digital domain and the analog
domain, and hence to a fundamental signal processing problem.
We show that there is an asymmetry between continuous-time
and discrete-time computability. Further, we study the decay
behavior of computable bandlimited signals, which describes the
concentration of the signals in the time domain, and, for locally
computable bandlimited signals, we analyze if it is always possible
to decide algorithmically whether the peak value is smaller than
a given threshold.

Index Terms—Peak value, decay behavior, effective approxi-
mation, algorithm, computability

I. INTRODUCTION

THE peak value of a signal is a distinguished quantity,
with relevance for many applications. For example, in

communication systems that employ orthogonal frequency
division multiplexing (OFDM) large peak-to-average power
ratios (PAPRs), and hence large peak values, are problematic,
because they can overload amplifiers, which in turn leads to
undesired out-of-band radiation and distorted signals [2]–[4].
Thus, a control of the peak value is essential. Numerous papers
analyzed the PAPR [5], [6], and several methods to reduce the
PAPR have been proposed [7]–[12].

The PAPR control is important not only for power amplifiers
in OFDM systems, but also for base stations and terminals in
other modern communication systems. They key problem is
that the power amplifiers have only a limited linear range, and
the goal is to optimally utilize this range. For signals with
constant envelop this can be easily achieved. However, for
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broadband signals the situation is more complicated. Those
signals can have large PAPRs, which lead to out-of-band
radiation that has to be suppressed by expensive analog filters.

In modern signal processing applications, often the signals
are directly created in the digital domain and later converted
into the analog domain. In the communications example
discussed above, this would be the digital baseband signal that
later is converted into an analog signal for the actual transmis-
sion over an antenna. Bandlimited signals are a suitable model
for transmit signals in communication systems. In order to
avoid large PAPRs, it is necessary to control the peak value
of the continuous-time signal. One approach is to compute
the peak value of the continuous-time signal, and, if it is
too high, suitable correction algorithms are applied. Often, the
correction algorithms are implemented in the digital domain.
In order to make them work and to assess their effectiveness,
it is essential that the peak value of the continuous-time signal
can be determined from the discrete-time signal, i.e., from the
samples of the signal. In this paper we study if this can be done
algorithmically on a digital computer. To study this question,
we employ the concept of Turing computability [13], [14].
We will come back to the peak value problem in Section IV,
where we also discuss existing results. However, to the best
of our knowledge, none of the results consider questions of
computability.

A Turing machine is an abstract device that manipulates
symbols on a strip of tape according to certain rules. Although
the concept is very simple, a Turing machine is capable of
simulating any given algorithm [15], [16]. Turing machines
have no limitations in terms of memory or computing time,
and hence provide a theoretical model that describes the fun-
damental limits of any practically realizable digital computer.

Computability is a mature topic in computer sciences [15]–
[18], and one of the key concepts of this theory is the
effective, i.e., algorithmic control of the approximation error.
In the signal processing literature, however, this aspect has
not gotten much attention so far. Recently, some observations
about signal processing operations have been made, where
computability problems can occur [19]–[23].

We show that with oversampling, the peak value of a
bandlimited signal can be computed algorithmically from the
samples of the signal, and give an algorithm for the com-
putation (Theorem 1). In contrast, without oversampling the
peak value of a bandlimited signal is not always computable
(Theorem 5). As a consequence, the peak value of these
critical signals cannot be determined using digital hardware
such as DSPs, FPGAs, or CPUs. Since our signal model is
very general—we assume only bandlimitedness—it does not
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only apply to OFDM signals, but also to other more general
waveforms, for example, those which have been proposed for
5G wireless systems [24].

Our analyses address a general question: when is it possible
to infer properties of the continuous-time signal, such as the
peak value, from the properties of the corresponding discrete-
time signal? Such a relation would be important for all signal
processing applications that link both domains. We will see
that, in contrast to other signal properties, such as the signal
energy, there is a difference between both domains with
respect to the computability of the peak value (Theorem 3). A
further property that we study is the signal’s decay behavior.
For finite energy signals it is a typical and justified assumption
that the signal energy is concentrated in a certain time interval,
and that the energy outside this interval is negligible for
applications. Further, for finite energy signals, it is possible
to algorithmically determine this interval. We analyze if the
same is true for the peak value of the signal, i.e., if it is always
possible to compute a time interval such that outside of this
interval the peak value of the signal is below some threshold
(Corollary 1 and Theorem 6).

The structure of this paper is as follows. After the intro-
duction of the necessary notation in Section II, we present the
basic definitions and concepts of computability in Section III.
The peak value problem is further motivated in Section IV. In
Section V we prove our first result, the computability of the
peak value of a computable bandlimited signal if oversampling
is used. The decay behavior for the oversampling case is
studied in Section VI. Then, in Section VII we analyze critical
sampling at Nyquist rate and show that in this case the peak
value cannot always be computed. The decay behavior for
this case is studied in Section VIII. Further, in Section IX
the special case of locally computable signals is investigated.
Semi-decidability for certain relevant signal sets and the
connection to exit flags is analyzed in Section X, before we
conclude the paper in Section XI.

II. NOTATION

By c0 we denote the set of all sequences that vanish at
infinity. For Ω ⊂ R, let Lp(Ω), 1 ≤ p < ∞, be the space of
all measurable, pth-power Lebesgue integrable functions on
Ω, with the usual norm ‖ · ‖p, and L∞(Ω) the space of all
functions for which the essential supremum norm ‖ · ‖∞ is
finite. The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞, consists
of all entire functions of exponential type at most σ, whose
restriction to the real line is in Lp(R) [25, p. 49]. The norm
for Bpσ is given by the Lp-norm on the real line. A function
in Bpσ is called bandlimited to σ. B∞σ,0 denotes the space of all
functions in B∞σ that vanish on the real line at infinity. For a
function f and a > 0, we set Z/a = {k/a}k∈Z and denote
by f |Z/a the sequence {f(k/a)}k∈Z, which is the restriction
of f to the set Z/a.

III. COMPUTABILITY

The theory of computability is a well-established field
in computer sciences [13]–[18]. Alan Turing introduced the
concept of a computable real number in [13], [14]. A sequence

of rational numbers {rn}n∈N is called computable sequence
if there exist recursive functions a, b, s from N to N such that
b(n) 6= 0 for all n ∈ N and rn = (−1)s(n)a(n)/b(n), n ∈ N.
A recursive function is a function, mapping natural numbers
into natural numbers, that is built of simple computable func-
tions and recursions [26]. Recursive functions are computable
by a Turing machine.

A set A ⊂ N is called recursively enumerable if A = ∅ or
A is the range of a recursive function. A set A ⊂ N is called
recursive if both A and N\A are recursively enumerable. The
fact that there exist sets which are recursively enumerable but
not recursive will be important for us [17, p. 7, Proposition A],
[26, p. 18].

A real number x is said to be computable if there exists
a computable sequence of rational numbers {rn}n∈N and a
recursive function ξ : N → N such that, for all M ∈ N,
we have |x − rn| ≤ 2−M for all n ≥ ξ(M). This form of
convergence with a computable control of the approximation
error is called effective convergence.

Example 1. We give an example that illustrates that this kind
of an effective control of the approximation error is essential
for the computation of even very simple real-world problems.
Consider the discharge behavior of an RC circuit, which is
mathematically described by

u(t) = e−
t
RC , t > 0, u(0) = 1, (1)

where R is the resistance, C the capacitance, and u(t) is the
voltage at the capacitor. A digital computer can only handle
rational numbers exactly. Hence, we assume that R and C are
rationals. According to the Lindemann–Weierstrass theorem,
ex is a transcendental number for every rational x. Hence, if
we want to compute the voltage u(t) at a rational time instant
t then the result will be a transcendental number which has
to be approximated by the digital computer. This computed
approximation is only meaningful if the approximation error
can be effectively controlled.

Note that the exponential function in (1) is an entire function
of exponential type and therefore a bandlimited function.
Even for this simple function a Turing machine is not able
to compute the function values for t 6= 0 exactly, but only
approximations. This behavior is generic for entire functions
that are no polynomials.

We call a sequence of real numbers {xn}n∈N ⊂ R, a
computable sequence if there exists a computable double
sequence of rationals {rn,m}n,m∈N and a recursive function
ξ : N × N → N such that, for all M ∈ N and n ∈ N, we
have |xn − rn,m| ≤ 2−M for all m ≥ ξ(M,n). Note that if
a computable sequence of real numbers {xn}n∈N converges
effectively to a limit x, then x is a computable real number
[17, p. 20, Corollary 2a]. A non-computable real number was
for example constructed in [27]. By Rc we denote the set of
computable real numbers and by Cc = Rc + iRc the set of
computable complex numbers.

A sequence {x(k)}k∈Z in c0 is called computable in c0
if every number x(k), k ∈ Z, is computable and there exist
a computable sequence {xn}n∈N ⊂ c0, where each xn has
only finitely many non-zero elements, and a recursive function
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ξ : N → N, such that for all M ∈ N we have ‖x − xn‖`∞ ≤
2−M for all n ≥ ξ(M). By Cc0 we denote the set of all
sequences that are computable in c0.

There are several—not equivalent—definitions of com-
putable functions, most notably, computable continuous func-
tions, Turing computable functions, Markov computable func-
tions, and Banach–Mazur computable functions [18]. A func-
tion that is computable with respect to any of the above
definitions, has the property that it maps computable numbers
into computable numbers.

We now give the definition of a computable continuous
function [17, p. 25, Definition A(ii)]. Let I ⊂ R be an interval,
where the endpoints are computable real numbers. A function
f : I → R is called a computable continuous function if

1) f maps every computable sequence {tn}n∈N ⊂ I into a
computable sequence {f(tn)}n∈N of real numbers.

2) there exists a recursive function d : N→ N such that for
all t1, t2 ∈ I and all M ∈ N we have: |t1−t2| ≤ 1/d(M)
implies |f(t1)− f(t2)| ≤ 2−M .

Next, we extend this definition to functions defined on R. A
function f : R→ R is a called computable continuous function
if

1) f maps every computable sequence {tn}n∈N ⊂ R into a
computable sequence {f(tn)}n∈N of real numbers.

2) there exists a recursive function d : N×N→ N such that
for all L,M ∈ N we have: |t1−t2| ≤ 1/d(L,M) implies
|f(t1)− f(t2)| ≤ 2−M for all t1, t2 ∈ [−L,L].

A weaker form of computability is Banach–Mazur com-
putability. A function f : R → R is called Banach–Mazur
computable if it maps every computable sequence {tn}n∈N ⊂
R into a computable sequence {f(tn)}n∈N of real numbers,
i.e., if it satisfies condition 1) of the definition of a com-
putable continuous function. We can generalize the definition
of Banach–Mazur computability to more general mappings.
Let M be some set of computable functions. We call a
mapping ψ : M → R Banach–Mazur computable if it maps
every computable sequence {fn}n∈N ⊂M into a computable
sequence {ψ(fn)}n∈N of real numbers.

In addition to the above mentioned definitions of com-
putability, we introduce a definition for computable functions
in Banach spaces, which is based on effective convergence.
We call a function f elementary computable if there exists
a natural number L and a sequence of computable numbers
{αk}Lk=−L such that

f(t) =
L∑

k=−L

αk
sin(π(t− k))

π(t− k)
. (2)

Note that every elementary computable function f is a finite
sum of computable functions and hence computable. As a
consequence, for every t ∈ Rc the number f(t) is computable.
Further, the sum of finitely many elementary computable func-
tions is computable, as well as the product of an elementary
computable function with a computable number.

A signal f ∈ B∞π,0 is called computable in B∞π,0, if there exist
a computable sequence of elementary computable functions
{fN}N∈N and a recursive function ξ : N → N such that,
for all M ∈ N, we have ‖f − fN‖∞ ≤ 2−M for all
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Fig. 1. For a computable signal we can always determine an error bar and
then can be sure that the true value lies within the specified error range.

N ≥ ξ(M). By CB∞π,0 we denote the set of all functions in
B∞π,0 that are computable in B∞π,0. According to this definition,
we can approximate any signal f ∈ CB∞π,0 by an elementary
computable function, where we have an “effective” control of
the approximation error, as illustrated in Fig 1.

Remark 1. Since for every elementary computable function fN
the norm ‖fN‖∞ is computable, it follows from the inequality
|‖f‖∞ − ‖fN‖∞| ≤ ‖f−fN‖∞ that the norm ‖f‖∞, i.e., the
maximum of f , is computable for all f ∈ CB∞π,0.

Remark 2. If f ∈ CB∞π,0 then f is also a computable contin-
uous function according to the definition using the effective
uniform continuity, because |f(t1)−f(t2)| ≤ ‖f ′‖∞|t1−t2| ≤
π‖f‖∞|t1 − t2|, and ‖f‖∞ is computable.

IV. THE PEAK VALUE PROBLEM

The peak value problem that we study in this paper can be
summarized as follows. Given a continuous-time bandlimited
signal f ∈ B∞π,0, if we know f on a discrete set such as Z/a,
a ≥ 1, i.e., if we know f |Z/a, can we determine the peak
value of f , i.e., ‖f‖∞, or can we at least find an upper bound
for ‖f‖∞?

The peak value problem is relevant, because in many
applications the continuous-time signal f is not known, but
only the discrete-time samples f |Z/a. This is, for example, the
case in mobile communications, where we create a discrete-
time complex baseband signals, and need to control the peak
value of the corresponding continuous-time signal.

Important questions related to the peak value problem are:
1) Can we determine the peak value (or an upper bound) of

the continuous-time signal from the discrete-time signal?
2) Can we compute the peak value on a digital computer?
3) Which role plays the oversampling factor a?
The peak value problem for equidistant sampling was stud-

ied, for example, in [28], [29], and for non-equidistant sam-
pling in [30]. Further, results for the special cases of OFDM
and CDMA signals were obtained in [31]–[33]. Question 1
has partly been answered in [28], [29], where it was shown
that, for all f ∈ B∞π,0 and a > 1, we have

‖f‖∞ ≤
1

cos( π2a )
‖f |Z/a‖`∞ . (3)
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Fig. 2. Plot of the function 1/ cos (π/(2a)). The unbounded increase when
a tends to 1 is clearly visible.

The behavior of the upper bound on the right-hand side
of (3) is plotted in Fig. 2. Inequality (3) shows that, with
oversampling, we can bound the peak value of f from above
by an expression that uses only the peak value of the samples
f |Z/a and the oversampling factor a. Inequality (3) can also be
used to study the influence of the oversampling factor a > 1
on the computability and approximability of the peak value. If
the oversampling factor a is increased, then the approximation
error can be better controlled. This better control of the
approximation error does not come for free, because the signal
has to be known on the oversampling set.

We will study Questions 2 and 3 in the rest of this paper.

V. COMPUTATION OF THE PEAK VALUES
WITH OVERSAMPLING

The following theorem is our main result for the oversam-
pling case. If we use oversampling, i.e., if we know f on
an oversampling set Z/a, a > 0, and if the sequence of
samples f |Z/a is computable, then we can compute ‖f‖∞
from the samples f |Z/a. We prove this fact by providing an
explicit algorithm for the computation of ‖f‖∞. We will see
in Section VII that without oversampling, i.e., for a = 1, the
problem of computing the peak value cannot always be solved
algorithmically.

Theorem 1. Let f ∈ B∞π,0 and a > 1, a ∈ Rc. If f |Z/a ∈ Cc0
then we have f(t) ∈ Cc for all t ∈ Rc, and we can compute
‖f‖∞ ∈ Rc algorithmically.

Proof. Let f ∈ B∞π,0 and a > 1, a ∈ Rc, be arbitrary but fixed.
Further, let κ ∈ CB1aπ be defined in the frequency domain by

κ̂(ω) =


1
a , |ω| ≤ π,
|ω|−aπ
aπ(1−a) , π < |ω| < aπ,

0, |ω| ≥ aπ.

Then we have

f(t) =
∞∑

k=−∞

f

(
k

a

)
κ

(
t− k

a

)
, t ∈ R, (4)

and the series in (4) converges absolutely. According to our
assumption, we have f |Z/a ∈ Cc0. Thus, it follows that there
exists a recursive function η such that for all M ∈ N we have∣∣∣∣f (ka

)∣∣∣∣ ≤ 1

2M
(5)

for all |k| ≥ η(M). We will prove this fact in Theorem 7. Let
M ∈ N be arbitrary but fixed, and let

fN (t) =
N∑

k=−N

f

(
k

a

)
κ

(
t− k

a

)
, t ∈ R. (6)

Then, for N ≥ η(M), we have

|f(t)− fN (t)| =

∣∣∣∣∣∣
∑
|k|>N

f

(
k

a

)
κ

(
t− k

a

)∣∣∣∣∣∣
≤ max
|k|>N

∣∣∣∣f (ka
)∣∣∣∣ ∞∑

k=−∞

∣∣∣∣κ(t− k

a

)∣∣∣∣
≤ a(1 + π)‖κ‖1

2M

for all t ∈ R and N ≥ η(M), where we used Nikol’skiı̆’s
inequality [25, p. 49] as well as inequality (5) in the third
line. Taking the supremum on both sides, it follows that

‖f − fN‖∞ ≤
a(1 + π)‖κ‖1

2M
(7)

for all N ≥ η(M). Since ‖κ‖1 ∈ Rc, we see that {fN}N∈N
converges effectively to f in the L∞-norm. Thus, we have
f ∈ CB∞aπ,0, and, as a consequence, f(t) ∈ Cc for all t ∈ Rc.
Using the inverse triangle inequality, we further obtain

|‖f‖∞ − ‖fN‖∞| ≤ ‖f − fN‖∞ ≤
a(1 + π)‖κ‖1

2M

for all N ≥ η(M), which shows that the computable sequence
{‖fN‖∞}N∈N of computable numbers converges effectively
to ‖f‖∞. Hence, it follows that ‖f‖∞ ∈ Rc.

Remark 3. Note that the proof of Theorem 1 already gives us
an algorithm how to compute the peak value ‖f‖∞. We first
specify the desired approximation accuracy ε, where ε has to
be a computable number. Then we compute the corresponding
M that achieves this accuracy, i.e., the smallest integer M such
that

a(1 + π)‖κ‖1
2M

≤ ε.

In the next step, we compute N = η(M). This gives us the
number of summands we need to use in (6). In the last step,
we compute ‖fN‖∞, which is possible because fN is the finite
sum of computable functions. This number is the desired result
that is guaranteed to be ε-close to ‖f‖∞.

Remark 4. As we have seen in the proof of Theorem 1, for t ∈
Rc, fN (t) is always a computable number and {fN (t)}N∈N
is a computable sequence of computable numbers. Because of
(7) it follows that f(t) ∈ Cc for all t ∈ Rc. For a = 0 however,
i.e., if no oversampling is used, we will see in Theorem 3 that
this is no longer true in general.
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VI. DECAY BEHAVIOR WITH OVERSAMPLING

Even though bandlimited signals have always an infinite
time duration, the assumption that they are essentially time-
limited is often made in practical applications. For finite
energy signals this is justified to the fact that the signal energy
is concentrated in a certain time interval, and therefore the
energy, and consequently the signal’s amplitude, outside this
interval is negligible.

For finite energy signals, it is possible to algorithmically de-
termine a finite time interval that contains a certain prescribed
amount of energy. We analyze if the same is true for the peak
value of the signal, more specifically, we ask if it is always
possible to compute a time interval such that outside of this
interval the peak value of the signal is below some threshold.

In the following, we study this question for the oversam-
pling case and under the assumption that the sequence of
samples f |Z/a is computable. Again, the answer is positive,
i.e., we can compute the signal’s concentration in the time
domain from the discrete-time signal by using digital signal
processing methods. This is expressed by the next result,
which is a direct corollary of Theorem 1.

Corollary 1. Let f ∈ B∞π,0 and a > 1, a ∈ Rc. If f |Z/a ∈ Cc0
then there exists a recursive function η : N → N, such that,
for all M ∈ N, we have

|f(t)| ≤ 1

2M
(8)

for all |t| ≥ η(M).

Corollary 1 shows that if f |Z/a ∈ Cc0 then for any threshold
2−M we can compute a time instant T0 = η(M) such that the
absolute value of the signal |f(t)| is smaller than 2−M outside
the interval [−T0, T0]. Hence, it is possible to algorithmically
determine an interval, on which the signal is “essentially”
concentrated with respect to the amplitude. This behavior is
illustrated in Fig. 3.

We will see in Theorem 6, Section VIII that all functions
in CB∞π,0 have the property that the interval on which they are
essentially concentrated, as described by (8), can be algorith-
mically determined. However, if only the samples are known
to be computable, such as in Corollary 1, then oversampling
is essential. In Corollary 2, Section VIII, we will prove that
without oversampling, the time concentration cannot always
be algorithmically controlled as in (8).

Proof of Corollary 1. Let f ∈ B∞π,0, a > 1, a ∈ Rc, such
that f |Z/a ∈ Cc0. Inequality (7) in the proof of Theorem 1
shows that there exists a computable sequence {fN}N∈N
of functions, having the shape (6), and a recursive function
η1 : N→ N, such that, for all M ∈ N, we have

|f(t)− fN (t)| ≤ 1

2M+1

for all N ≥ η1(M). Since each fN is the finite sum of rapidly
decreasing functions, there exists a recursive function η2 : N×
N→ N, such that, for all M ∈ N, we have

|fN (t)| ≤ 1

2M+1

2 3 4 5 6 η(M) 8 9 10

0

1

2M

Fig. 3. Illustration of the decay behavior. We have |f(t)| ≤ 2−M for all
|t| ≥ T0 = η(M). If the samples of f , taken at a rate above the Nyquist
rate (oversampling), are computable, then η is computable.

for all |t| ≥ η2(M,N). It follows that we have

|f(t)| = |f(t)− fη1(M)(t) + fη1(M)(t)|
≤ |f(t)− fη1(M)(t)|+ |fη1(M)(t)|

≤ 1

2M

for all |t| ≥ η2(M,η1(M)).

VII. COMPUTATION OF THE PEAK VALUES
WITHOUT OVERSAMPLING

In this section we study the situation when no oversampling
is used. Here, we will obtain a negative result and see that
oversampling is indeed necessary to obtain the results from
the last section.

Our first theorem is not related to computability, and shows
that the peak value of a signal f ∈ CB∞π,0 cannot be inferred
from the norm of its samples ‖f |Z‖`∞ . Hence, a simple upper
bound such as (3) cannot exist.

Theorem 2. For all M ∈ N, there exists a signal fM ∈ CB∞π,0
such that ‖fM |Z‖`∞ ≤ 1 and ‖fM‖∞ > M .

Proof. Let M ∈ N be arbitrary but fixed. For N ∈ N, let

f(t,N) =
N∑
k=1

(−1)k
sin(π(t− k))

π(t− k)
, t ∈ R.

Then f( · , N) is computable, and we have ‖f( · , N)|Z‖`∞ =
1. For t = N + 1/2 we have

|f(N + 1
2 , N)| = 1

π

N∑
k=1

1

N + 1
2 − k

=
1

π

N−1∑
k=0

1

k + 1
2

>
1

π

N−1∑
k=0

∫ k+1

k

1

τ + 1
2

dτ

=
1

π

∫ N

0

1

τ + 1
2

dτ

=
1

π

[
log

(
N +

1

2

)
− log

(
1

2

)]
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=
1

π
log(2N + 1).

Hence, for N ∈ N with

N ≥
eπM −1

2
,

we have

‖f( · , N)‖∞ ≥ |f(N + 1
2 , N)| > M.

Choosing fM = f( · , N) with N = d(eπM −1)/2e completes
the proof.

In Theorem 2 we have seen that the knowledge of the
peak value of the samples ‖f |Z‖`∞ is not enough to infer
any information about the peak value of the continuous-time
signal ‖f‖∞. Next, we study from a computational point of
view what happens if the entire sequence of samples f |Z is
available.

Theorem 1 has shown that if, for f ∈ B∞π,0, we have f |Z/a ∈
Cc0 for some a > 1, a ∈ Rc, then the signal values f(t) are
computable, i.e., we have f(t) ∈ Cc for all t ∈ Rc. Next,
we will prove that this is not guaranteed if a = 1, i.e., if no
oversampling is used. For a = 1 it is not possible to infer
the computability of the continuous time signal f from the
computability of the discrete time signal f |Z. This highlights
the importance of oversampling in Theorem 1.

Theorem 3. There exists an f1 ∈ B∞π,0 such that f1|Z ∈ Cc0
and f1(t) 6∈ Cc for all t ∈ Rc\Z. Hence, we have f1 6∈ CB∞π,0.

For the proof of Theorem 3, we need two auxiliary results.
The first one is the Valiron sampling series, which is also
sometimes called Tschakaloff’s series. For a proof, see for
example [34, p. 12] or [25, p. 60].

Lemma 1 (Valiron sampling series). For all f ∈ B∞π , we have

f(t) = f(0)
sin(πt)

πt
+ f ′(0)

sin(πt)

π

+ t
∞∑

k=−∞
k 6=0

f(k)

k

sin(π(t− k))

π(t− k)
, t ∈ R.

For fixed t ∈ R, the series converges absolutely.

The second one is a statement about the computability of
the last term in the Valiron expansion. Lemma 2 was proved
in [21, p. 6433].

Lemma 2. Let f ∈ CB∞π,0 and t ∈ Rc. Then we have

t
∞∑

k=−∞
k 6=0

f(k)

k

sin(π(t− k))

π(t− k)
∈ Rc.

The proof of Theorem 3 follows the same line of ideas
as the proof of Theorem 3 in [21], and parts are identical.
However, since important details are different, and for the sake
of completeness, we include the proof here.

Proof of Theorem 3. For N ∈ N, let

pN (t) = −
N∑
k=1

(−1)k
sin(π(t− k))

π(t− k)
, t ∈ R.

Since pN is a finite sum of computable functions in B∞π,0, we
see that pN ∈ CB∞π,0. For t = 1/2, we have

pN

(
1

2

)
=

1

π

N∑
k=1

1

k − 1
2

.

Note that pN (1/2) is a computable real number. Since

1

k − 1
2

>

∫ k+1

k

1

τ − 1
2

dτ, k ≥ 1,

it follows that

pN

(
1

2

)
=

1

π

∫ N+1

1

1

τ − 1
2

dτ >
1

π
log(2N + 1). (9)

For t ∈ Z, we have |pN (t)| ≤ 1. Further, for t ∈ R \ Z, we
have

|pN (t)| ≤
N∑
k=1

∣∣∣∣ sin(π(t− k))

π(t− k)

∣∣∣∣
< 2 +

1

π

k1(t)∑
k=1

1

t− k
+

1

π

N∑
k=k2(t)

1

k − t

< 2 +
1

π

k1(t)∑
k=1

1

k1(t) + 1− k
+

1

π

N∑
k=k2(t)

1

k − k2(t) + 1

= 2 +
1

π

k1(t)∑
k=1

1

k
+

1

π

N−k2(t)+1∑
k=1

1

k

≤ 2 +
2

π

N∑
k=1

1

k

< 2 +
2

π
+

2

π
log(N),

where k1(t) is the largest natural number that is smaller than
or equal to N and satisfies k1(t) + 1 < t. Further, k2(t) is the
smallest natural number such that k2(t)−1 > t. If k2(t) > N
then the above sums involving k2(t) are the empty sums. We
also used the inequality
N∑
k=1

1

k
< 1 +

N∑
k=2

∫ k

k−1

1

τ
dτ = 1 +

∫ N

1

1

τ
dτ = 1 + log(N)

in the last line. Hence, we have

‖pN‖∞ ≤ 2 +
2

π
+

2

π
log(N). (10)

Let
gN (t) =

1

pN ( 1
2 )
pN (t), t ∈ R.

We have

gN (k) =

{
− (−1)k
pN ( 1

2 )
, 1 ≤ k ≤ N,

0, otherwise.

Further, for N ∈ N, we have

‖gN‖∞ =
1

|pN ( 1
2 )|
‖pN‖∞

<
2π

log(2N + 1)
+

2

log(2N + 1)
+

2 log(N)

log(2N + 1)

< 2π + 4,
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where we used (10) and (9) in the first inequality.
Let A ⊂ N be an arbitrary recursively enumerable nonre-

cursive set, and let φA : N→ N be a recursive enumeration of
the elements of A, where φA is an injective function, i.e., for
every element k ∈ A there exists exactly one Nk ∈ N with
φA(Nk) = k. We consider the function

f1(t) =
∞∑
N=1

1

2φA(N)
gN (t), t ∈ R. (11)

Since
∞∑
N=1

∥∥∥∥ 1

2φA(N)
gN

∥∥∥∥
∞
≤
∞∑
N=1

1

2φA(N)
‖gN‖∞

<
∞∑
N=1

1

2N
(2π + 4)

< 2π + 4,

it follows that the series in (11) is absolutely convergent and
that f1 ∈ B∞π,0.

We further consider the sequence f1|Z = {f1(k)}k∈Z,
defined by

f1(k) =

∞∑
N=1

1

2φA(N)
gN (k), k ∈ Z. (12)

Since

‖f1|Z‖`∞ ≤
∞∑
N=1

1

2φA(N)
‖gN |Z‖`∞ <

∞∑
N=1

1

2N
1

pN ( 1
2 )

<
π

log(2N + 1)
< π,

we see that the series in (12) is absolutely convergent and that
f1|Z ∈ c0. We next prove that f1|Z ∈ Cc0. For M ∈ N, the
sequence {

M∑
N=1

1

2φA(N)
gN (k)

}
k∈N

(13)

is, as a finite linear combination of sequences in c0 with only
finitely many non-zero elements, a sequence in c0 with only
finitely many non-zero elements. Since pN+1(1/2) > pN (1/2)
for all N ∈ N, we obtain, for M ∈ N,∥∥∥∥∥f1|Z −

M∑
N=1

1

2φA(N)
gN |Z

∥∥∥∥∥
`∞

≤
∞∑

N=M+1

1

2φA(N)
‖gN |Z‖`∞

<
1

pM+1

(
1
2

) ∞∑
N=M+1

1

2N

<
1

pM+1

(
1
2

)
≤ π

log(2M + 3)
.

Thus, (13) converges effectively to f1|Z as M tends to infinity,
which implies that x∗ ∈ Cc0. Since

∞∑
N=1

1

2φA(N)

is not computable [17], [27], it follows that

f1

(
1

2

)
=
∞∑
N=1

1

2φA(N)
gN

(
1

2

)
=
∞∑
N=1

1

2φA(N)

is not computable, i.e., we have f1(1/2) 6∈ Rc.
According to Lemma 1, we have, using that f1(0) = 0, that

f1(t) = f ′1(0)
sin(πt)

π
+ t

∞∑
k=−∞
k 6=0

f1(k)

k

sin(π(t− k))

π(t− k)︸ ︷︷ ︸
=:B2(t)

. (14)

According to Lemma 2 we have B2(t) ∈ Rc for all t ∈ Rc,
and for t = 1/2 we know that f1(1/2) 6∈ Rc. Thus, the left-
hand side and, consequently, the right-hand side of (14) are
not computable for t = 1/2. It follows that f ′1(0) 6∈ Rc. This
implies that f ′1(0) sin(πt)/π 6∈ Rc, and, consequently, that
f1(t) 6∈ Rc for all t ∈ Rc \ Z.

We have seen in Theorem 3 that the computability of the
discrete time signal f |Z does not always imply the com-
putability of the continuous time signal f . However, if f(t)
is computable for at least one computable non-integer time
instant t then f(t) is computable for all t ∈ Rc, as the next
theorem shows. Note, however, that the computability of f(t)
for all t ∈ Rc does not imply that f ∈ CB∞π,0, as we will see
in Section IX.

Theorem 4. Let f ∈ B∞π,0 and f |Z ∈ Cc0. We have f(t) ∈ Cc
for all t ∈ Rc if and only if there exists a t1 ∈ Rc \ Z such
that f(t1) ∈ Cc.

Proof. “⇒”: This direction is obvious. “⇐”: Let t1 ∈ Rc such
that f(t1) ∈ Cc, and let

g(t) =
f(t)− f(t1)

t− t1
, t ∈ R.

Since g ∈ B2π , we have

f(t)− f(t1)

t− t1
= g(t) =

∞∑
k=−∞

g(k)
sin(π(t− k))

π(t− k)

=
∞∑

k=−∞

f(k)− f(t1)

k − t1
sin(π(t− k))

π(t− k)

for all t ∈ Rc. It follows that

f(t) = f(t1) + (t− t1)
∞∑

k=−∞

f(k)

k − t1
sin(π(t− k))

π(t− k)

− f(t1)(t− t1)
∞∑

k=−∞

1

k − t1
sin(π(t− k))

π(t− k)
. (15)

It can be shown that, for all t ∈ Rc, the first series in (15)
converges effectively, because f |Z ∈ Cc0. Hence, the limit is
a number in Cc. Similarly, for t ∈ Rc, the limit of the second
series is in Cc. Both calculations, which use the effective
convergence of

∑∞
k=1 1/k2, are elementary but lengthy and

therefore omitted. Since f(t1) ∈ Cc, it follows that f(t) ∈ Cc
for all t ∈ Rc,
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The next theorem, our main result about the non-
computability of the peak value in the case where no over-
sampling is employed, shows that without oversampling there
exist signals for which either the peak value is not computable
or the maximum is attained at a non-computable time instant.

Theorem 5. There exists a real-valued signal f1 ∈ B∞π,0 with
f1|Z ∈ Cc0 such that ‖f1‖∞ 6∈ Rc or arg maxt∈R f1(t) 6∈ Rc.

Proof. We use the function f1 ∈ B∞π,0 from Theorem 3. We
have f1|Z ∈ Cc0 and f1(t) 6∈ Rc for all t ∈ Rc \ Z. It can
be shown that f1 takes its maximum on the set R \ Z. Let
t0 = arg maxt∈R f1(t). We do a proof by contradiction and
assume that both f1(t0) = maxt∈R f1(t) ∈ Rc and t0 ∈ Rc,
and show that this assumption leads to a contradiction. If t0 ∈
Rc, then we know from Theorem 3 that f1(t0) 6∈ Rc, which
is a contradiction to our assumption.

Theorems 2 and 5 show that the results for a > 1 are sharp
in the sense that for a = 1 no algorithmic control of the peak
value is possible, even for f ∈ B∞π,0.

Remark 5. The computability of the continuous time signal f
in not a necessary condition for the peak value ‖f‖∞ to be
a computable number. Note that ‖f‖∞ ∈ Rc does not imply
that we actually have a procedure to compute ‖f‖∞ from f ,
it only means that ‖f‖∞ is a computable number. We will
come back to this topic in Theorem 13 of Section IX.

VIII. DECAY BEHAVIOR WITHOUT OVERSAMPLING

In this section we derive three results about the decay
behavior of computable signals and computable sequences,
respectively.

If f is computable in B∞π,0 then, for every threshold, we
can compute a time instant T0 from which on the signal stays
below the threshold.

Theorem 6. Let f ∈ CB∞π,0. Then there exists a recursive
function η : N→ N, such that, for all M ∈ N, we have

|f(t)| ≤ 1

2M
(16)

for all |t| ≥ η(M).

According to Theorem 6, for f ∈ CB∞π,0, it is possible to
algorithmically compute the interval on which the signal f is
essentially concentrated, as described by (16). Hence, signals
f ∈ CB∞π,0 possess the same behavior as signals f ∈ B∞π,0 that
additionally satisfy f |Z/a ∈ Cc0 for some a > 1, a ∈ Rc (see
Corollary 1). After the proof of Theorem 6, we will see in
Theorem 7 that discrete-time signals s ∈ Cc0 exhibit the same
behavior. However, for general signals in f ∈ B∞π,0 that satisfy
f |Z ∈ Cc0, we do not have this algorithmic control in general,
as Corollary 2 will show.

Proof of Theorem 6. Since f ∈ CB∞π,0, there exists a recursive
function ξ and a computable sequence of elementary com-
putable functions {fN}N∈N such that for all M ∈ N we have

‖f − fN‖∞ ≤
1

2M

for all N ≥ ξ(M). Let M ∈ N be arbitrary but fixed. For
N ≥ ξ(M + 1) we have

|f(t)− fN (t)| ≤ 1

2M+1

for all t ∈ R. Each fN is an elementary computable function,
having the shape

fN (t) =

K(N)∑
k=−K(N)

ck(N)
sin(π(t− k))

π(t− k)
,

where K(N) and ck(N), k = −K(N), . . . ,K(N), are
recursive functions. For |t| > K(N) we further have

|fN (t)| ≤
K(N)∑

k=−K(N)

|ck(N)|
∣∣∣∣ sin(π(t− k))

π(t− k)

∣∣∣∣
≤ 1

π(|t| −K(N))

K(N)∑
k=−K(N)

|ck(N)|.

Since the numbers ck(N), k = −K(N), . . . ,K(N), are
computable, it follows that

C1(N) =

K(N)∑
k=−K(N)

|ck(N)|

is a computable number. Next, we compute l0(N) ∈ N such
that

C1(N)

πl0(N)
≤ 1

2M+1
.

Then, for |t| ≥ K(N) + l0(N), we have

|fN (t)| ≤ C1(N)

π(|t| −K(N))

≤ C1(N)

π(K(N) + l0(N)−K(N))

=
C1(N)

πl0(N)

≤ 1

2M+1
,

and it follows that

f(t) = |f(t)− fN (t) + fN (t)|
≤ |f(t)− fN (t)|+ |fN (t)|

≤ 1

2M+1
+

1

2M+1
=

1

2M

for all N ≥ ξ(M + 1) and |t| ≥ K(N) + l0(N). Choosing
η(M) = K(ξ(M+1))+l0(ξ(M+1)) completes the proof.

Using the same arguments as in the proof of Theorem 6,
we can derive an analogous result for computable sequences
in Cc0.

Theorem 7. Let {s(n)}n∈N ∈ Cc0. Then there exists a
recursive function η : N → N, such that, for all M ∈ N we,
have

|s(n)| ≤ 1

2M

for all n ≥ η(M).
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Fig. 4. Illustration of the decay behavior. The samples of f are taken at
Nyquist rate (no oversampling) and are computable. However, it is not always
possible to compute a time instant T0 = η(M), such that |f(t)| ≤ 2−M for
all |t| ≥ T0 = η(M).

However, if we have a continuous-time signal f ∈ B∞π,0
and only know that the sequence of samples f |Z is com-
putable, then we cannot always compute such a time instant
T0 = η(M) such that |f(t)| ≤ 2−M outside the interval
[−T0, T0], as the next corollary shows. This is in contrast to the
situation with oversampling that was discussed in Section VI,
and, hence, here the question whether we can control the
decay behavior of the continuous-time signal algorithmically
has to answered in the negative. The problematic behavior is
illustrated in Fig. 4.

Corollary 2. There exists a signal f3 ∈ B∞π,0 with f(t) ∈
Rc for all t ∈ Rc and f |Z ∈ Cc0, such that there exists no
recursive function η : N → N such that, for all M ∈ N, we
have

|f3(t)| ≤ 1

2M

for all |t| ≥ η(M).

Remark 6. Note that f3 in Corollary 2 cannot be in CB∞π,0,
because otherwise the decay behavior would be computable
according to Theorem 6.

Proof. For n ∈ N, let

gn(k) =

{
(−1)k, 0 ≤ k ≤ 2n,

0, otherwise,

and

gn(t) =
2n∑
k=0

gn(k)
sin(π(t− k))

π(t− k)
, t ∈ R.

For tn = 2n+ 1/2, we have

gn(tn) =
1

π

2n∑
k=0

1

2n+ 1
2 − k

=: C(n).

A simple calculation shows that

C(n) >
log(4n+ 1)

π
.

We set

q1(t) =
1

2φA(1)

g1(t)

C(1)
, t ∈ R,

t1 = t1, and N1 = 0. For even N∗ with N∗ > t1 we have

g2(t1 −N∗)
C(2)

=
1

C(2)

N∗+4∑
k=N∗

(−1)k
sin(π(t1 − k))

π(t1 − k)

=
sin(πt1)

πC(2)

N∗+4∑
k=N∗

1

t1 − k

=
−1

πC(2)

N∗+4∑
k=N∗

1

k − t1

>
−1

πC(2)

5

N∗ − t1
.

Let A ⊂ N be an arbitrary recursively enumerable nonrecur-
sive set, and let φA : N→ N be a recursive enumeration of the
elements of A, where φA is an injective function. We choose
N2 > t1 as the smallest even number such that

−1

2

1

2φA(1)
<
g2(t1 −N2)

C(2)
< 0.

Further, we set

q2(t) = q1(t) +
1

2φA(2)

g2(t−N2)

C(2)
, t ∈ R,

and t2 = N2 + t2. For even N∗ with N∗ > t2 and t = t1, t2,
we consider

g3(t−N∗)
C(3)

=
1

C(3)

N∗+6∑
k=N∗

(−1)k
sin(π(t− k))

π(t− k)

=
sin(πt)

πC(3)

N∗+6∑
k=N∗

1

t− k
=
−1

πC(3)

N∗+6∑
k=N∗

1

k − t

>
−1

πC(3)

7

N∗ − t
.

and chose N3 > t2 as the smallest even number such that

−1

4

1

2φA(1)
< − 7

πC(3)

1

N3 − t1
and

−1

2

1

2φA(2)
< − 7

πC(3)

1

N3 − t2
.

Then we have

−1

4

1

2φA(1)
<
g3(t1 −N3)

C(3)
< 0

and

−1

2

1

2φA(2)
<
g3(t2 −N3)

C(3)
< 0.

We set

q3(t) = q2(t) +
1

2φA(3)

g3(t−N3)

C(3)
, t ∈ R,

and t3 = N3 + t3. Suppose we have already defined Nk,
qk, and t1, . . . , tk. Then, for even N∗ with N∗ > tk and
t = t1, . . . , tk, we consider

gk+1(t−N∗)
C(k + 1)
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and chose Nk+1 > tk as the smallest even number such that

− 1

2k−l+1

1

2φA(l)
< − tk+1

πC(k + 1)

1

Nk+1 − tl
for all l = 1, . . . , k. Then we have

− 1

2k−l+1

1

2φA(l)
<
gk+1(tl −Nk+1)

C(k + 1)
< 0

for all l = 1, . . . , k. We set

qk+1(t) = qk(t) +
1

2φA(k+1)

gk+1(t−Nk+1)

C(k + 1)
, t ∈ R,

and tk+1 = Nk+1 + tk+1. Following this iterative procedure,
we have constructed a sequence of functions {qk}k∈N ⊂ B∞π,0,
where

qk(t) =
k∑

n=1

1

2φA(n)

gn(t−Nn)

C(n)
.

Since
‖gn‖∞ ≤ 2C(n), n ∈ N,

and, for M > N ,

‖qM − qN‖∞ ≤
M∑

n=N+1

1

2φA(n)

‖gn‖∞
C(n)

≤ 2
∞∑

n=N+1

1

2φA(n)
,

we see that {qk}k∈N is a Cauchy sequence in B∞π,0. The unique
limit f3 ∈ B∞π,0 is our desired signal.

For l ∈ N, we have

f3(l) =

∞∑
n=1

1

2φA(n)

gn(l −Nn)

C(n)
,

where the sum has only finitely many summands, and conse-
quently each f3(l), l ∈ N, is a computable real number. Next,
we consider the computable sequence{

N∑
n=1

1

2φA(n)

gn( · −Nn)

C(n)

}
N∈N

. (17)

Note that each element of (17) is a sequence with only finitely
many non-zero elements. We further have∥∥∥∥∥f3|Z −

N∑
n=1

1

2φA(n)

gn( · −Nn)

C(n)

∥∥∥∥∥
`∞

≤
∞∑

n=N+1

1

2φA(n)

1

C(n)

<
1

C(N + 1)

∞∑
n=N+1

1

2φA(n)

<
1

C(N + 1)

<
π

log(4N + 5)
,

where we used that supl∈Z|gn(l)| = 1 for all n ∈ N. This
shows that (17) converges effectively to f3|Z. Hence. we have
f3|Z ∈ Cc0.

We do the rest of the proof indirectly and assume that there
exists a recursive function η : N→ N such that, for all M ∈ N,
we have

|f3(t)| ≤ 1

2M

for all |t| ≥ η(M). Let r ∈ N be arbitrary. We have

f3(tr) =
∞∑
n=1

1

2φA(n)

gn(tr −Nn)

C(n)

=
r−1∑
n=1

1

2φA(n)

gn(tr −Nn)

C(n)
+

1

2φA(r)

gr(tr −Nr)
C(n)

+
∞∑

n=r+1

1

2φA(n)

gn(tr −Nn)

C(n)
.

For 1 ≤ n ≤ r we have tr − Nn > 2n, and consequently
gn(tr −Nn) ≥ 0. For n ≥ r + 1 we have

− 1

2n−r
1

2φA(r)
<
gn(tr −Nn)

C(n)
< 0.

Hence, we obtain

f3(tr) >
1

2φA(r)

gr(tr −Nr)
C(n)

−
∞∑

n=r+1

1

2φA(n)

1

2n−r
1

2φA(r)

>
1

2φA(r)

gr(tr)

C(n)
− 1

2φA(r)

∞∑
n=r+1

1

2

1

2n−r

=
1

2φA(r)
− 1

2

1

2φA(r)

=
1

2

1

2φA(r)
.

Let M ∈ N be arbitrary, and let r0 be the smallest number
such that tr0 ≥ φ(M). Then, for all r ≥ r0, we have

1

2

1

2φA(r)
< f3(tr) ≤

1

2M
.

It follows that φA(r) > M − 1 for all r ≥ r0, and,
consequently, that φA(r) 6∈ [1,M − 1] for all r ≥ r0. We
consider the sets

Ar0 = {φA(1), . . . , φA(r0 − 1)} ⊂ A

and
AMr0 = Ar0 ∩ [1, . . . ,M − 1].

AMr0 is the set of all k ∈ A with k ∈ [1,M − 1], because for
r ≥ r0 we have φA(r) > M − 1. Hence, for k ∈ [1, . . . ,M −
1]\AMr0 , we have k 6∈ A. Since M ∈ N was arbitrary, we have
an algorithm that can decide for each k ∈ N, whether k ∈ A
or k 6∈ A. This implies that A is a recursive set, which is a
contradiction.

IX. UPPER AND LOWER BOUNDS FOR LOCALLY
COMPUTABLE SIGNALS

We call a signal f ∈ B∞π,0 locally computable, if there exist a
computable double sequence of elementary computable func-
tions {fN,K}N∈N,K∈N and a recursive function ξ : N×N→ N
such that, for all K ∈ N and all M ∈ N, we have

max
|t|≤K

|f(t)− fN,K(t)| ≤ 1

2M
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for all N ≥ ξ(M,K). The set of all locally computable signals
f ∈ B∞π,0 is denoted by LCB∞π,0. Local computability in B∞π,0
is a weaker requirement than computability in B∞π,0. Hence,
we have LCB∞π,0 ⊃ CB∞π,0.

Theorem 8. Let f ∈ LCB∞π,0. Then we have ‖f‖∞ ∈ Rc.
Further, there exists a computable sequence {TMN}N∈N of
Turing machines TMN : LCB∞π,0 → Rc such that

1) for all f ∈ LCB∞π,0 and all N ∈ N we have

TMN+1(f) ≥ TMN (f),

2) for all f ∈ LCB∞π,0 we have

lim
N→∞

TMN (f) = ‖f‖∞, (18)

3) for each f ∈ LCB∞π,0 the convergence in (18) is effective,
i.e., for each f ∈ LCB∞π,0 there exists a recursive function
ξf : N→ N such that for all M ∈ N we have

|TMN (f)− ‖f‖∞| ≤
1

2M

for all N ≥ ξf (M).

Remark 7. Theorem 8 does not imply that we have an
algorithm that, for every f ∈ LCB∞π,0, can compute ‖f‖∞.
For f ∈ CB∞π,0, we know from Remark 1 that ‖f‖∞ is
algorithmically computable, i.e., there exists a Turing machine
that, for every input f ∈ CB∞π,0 can determine ‖f‖∞. In
Theorem 8, i.e., for f ∈ LCB∞π,0, the situation is different.
Even though ‖f‖∞ ∈ Rc, there exists no algorithm that, for
every f ∈ LCB∞π,0, can compute ‖f‖∞. The reason is that the
function ξf does not recursively depend on f , as we will see
in Theorem 10.

Proof of Theorem 8. Let f ∈ LCB∞π,0 be arbitrary but fixed.
Since f ∈ LCB∞π,0, there exist a computable double sequence
of elementary computable functions {fN,K}N∈N,K∈N and a
recursive function ξ : N × N → N such that, for all K ∈ N
and all M ∈ N, we have max|t|≤K |f(t) − fN,K(t)| < 2−M

for all N ≥ ξ(M,K). We set fM := fξ(M,M),M . Clearly,
{fM}M∈N is a computable sequence of computable functions,
and we have

max
|t|≤M

|f(t)− fM (t)| ≤ 1

2M
.

Thus, it follows that

max
|t|≤M

|fM (t)| − 1

2M
≤ max
|t|≤M

|f(t)| ≤ max
|t|≤M

|fM (t)|+ 1

2M
.

Since
lim
|t|→∞

f(t) = 0,

there exists a number K0 ∈ N such that

max
|t|≤K0

|f(t)| = ‖f‖∞.

Further, since f is a locally computable signal, and conse-
quently a computable continuous function, we see from [17,
p. 40, Theorem 7] that ‖f‖∞ is a computable number, i.e., that

‖f‖∞ ∈ Rc. For each M ∈ N there exists a Turing machine
TMM that computes

TMMf := max
|t|≤M

|fM (t)| − 1

2M
.

Note that we have TMM+1(f) > TMM (f), M ∈ N, as well
as

|TMM (f)− ‖f‖∞| ≤
2

2M
(19)

for all M ≥ K0. Hence, we see that limM→∞ TMM (f) =
‖f‖∞. For fixed f ∈ LCB∞π,0, the convergence of the sequence
{TMM (f)}M∈N to ‖f‖∞ is effective according to (19).

Based on the previous theorem, we can obtain a further
interesting result. In order to state this result, we introduce
the concept of semi-decidability. A set S ⊂ LCB∞π,0 is called
semi-decidable if there exists a Turing machine

TMS : LCB∞π,0 → {TMS stops,TMS runs forever}

that, given an input f ∈ LCB∞π,0 stops if and only if f ∈ S.
The next theorem shows that it is possible, for a given λ ∈

Rc, λ > 0, to algorithmically detect the signals f ∈ LCB∞π,0
for which ‖f‖∞ > λ, because the corresponding set of signals

S> = {f ∈ LCB∞π,0 : ‖f‖∞ > λ}

is semi-decidable. That is, there exists a Turing machine that
takes f ∈ LCB∞π,0 as an input and stops if and only if ‖f‖∞ >
λ. However, if ‖f‖∞ ≤ λ this Turing machine runs forever.
Hence, if the machine has not stopped after a certain amount
of time, we cannot say if ‖f‖∞ ≤ λ, or if ‖f‖∞ > λ but the
machine has not yet finished. The other practical relevant set

S< = {f ∈ LCB∞π,0 : ‖f‖∞ < λ}

is not semi-decidable, as we will see in Theorem 11. Hence, if
‖f‖∞ < λ, we have no way of verifying this algorithmically,
the Turing machine may run forever. Note that this theorem is
only concerned about continuous-time signals and makes no
assertion about the connection to the corresponding discrete-
time signals.

Theorem 9. For all λ ∈ Rc, λ > 0, the set

S> = {f ∈ LCB∞π,0 : ‖f‖∞ > λ}

is semi-decidable.

Proof. For all λ ∈ Rc there exists a Turing machine
TM>

λ : Rc → {TM>
λ stops,TM>

λ runs forever} such that, for
each input x ∈ Rc, TM>

λ (x) stops if and only if x > λ [17,
p. 14, Proposition 0]. We also use the Turing machines TMM

that we defined in the proof of Theorem 8, given by

TMMf = max
|t|≤M

|fM (t)| − 1

2M
.

We now describe an algorithm that defines a Turing machine
TMS> that, for f ∈ LCB∞π,0 stops if and only if f ∈ S>.
The existence of this Turing machine proves that S> is semi-
decidable. Let f ∈ LCB∞π,0 and λ ∈ Rc, λ > 0, be arbitrary
but fixed. We compute TM1(f) and start the Turing machine
TM>

λ (TM1(f)). After the first instruction step, we check if
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TM>
λ (TM1(f)) has stopped. If yes, then TM1(f) > λ, and

we have

‖f‖∞ ≥ max
|r|≤1
|f1(t)| − 1

2
> λ.

Further, we stop the algorithm, i.e., the Turing machine TMS> .
If TM>

λ (TM1(f)) has not stopped then we compute TM2(f)
and start another Turing machine TM>

λ (TM2(f)). We execute
the first instruction step of TM>

λ (TM2(f)) and the second
instruction step of TM>

λ (TM1(f)). If one of these Turing ma-
chines has stopped, then we have, using the same reasoning as
above, ‖f‖∞ > λ, and we stop the algorithm, i.e., the Turing
machine TMS> . If neither TM>

λ (TM2(f)) nor TM>
λ (TM1(f))

has stopped, then we start the next iteration step. Note that
if ‖f‖∞ ≤ λ then the algorithm, i.e., the Turing machine
TMS>(f) will run forever, because TMM (f) < ‖f‖∞ ≤ λ
for all M ∈ N.

Using this algorithm, we obtain a Turing machine TMS>
such that, for f ∈ LCB∞π,0, TMS>(f) stops if and only if
‖f‖∞ > λ. Hence, we see that S> is semi-decidable.

Next, we prove that there exists no Turing machine that, for
every f ∈ LCB∞π,0 can compute the peak value ‖f‖∞. To this
end, we consider the mapping ψ : LCB∞π,0 → Rc, f 7→ ‖f‖∞,
and prove that this mapping is not Banach–Mazur computable.

Theorem 10. The mapping ψ : LCB∞π,0 → Rc is not Banach–
Mazur computable.

Proof. We need to find a computable sequence {g∗n}n∈N ⊂
LCB∞π,0 such that the sequence of numbers {ψ(g∗n)}n∈N ⊂ Rc
is a non-computable sequence of computable reals. In par-
ticular, we will construct a computable sequence {g∗n}n∈N
of functions in LCB∞π,0, such that ψ(g∗n) ∈ {0, 1} for all
n ∈ N, but the sequence {ψ(g∗n)}n∈N is not computable, which
means there exists no Turing machine TM : N → {0, 1} with
TM(n) = ψ(g∗n), n ∈ N.

Let A ⊂ N be an arbitrary recursively enumerable non-
recursive set and φA : N → A a recursive enumeration of A,
where φA is an injective function. Further, let

fn(t) =
sin(π(t− n))

π(t− n)
, n ∈ N. (20)

{fn}n∈N is a computable sequence in LCB∞π,0. We set

gm,n =

{
fm̂, n ∈ {φA(1), . . . , φA(m)} with φA(m̂) = n,

fm, n 6∈ {φA(1), . . . , φA(m)}.

{gm,n}m∈N,n∈N is a computable double sequence of functions
in LCB∞π,0. Note that, if n ∈ {φA(1), . . . , φA(m)} then there
exists exactly one m̂ with φA(m̂) = n. Further, we define the
function κ : N× N→ N by

κ(M,K) = K + 1 + 2M .

Let n ∈ N be arbitrary. We first analyze the case n 6∈ A.
Then we have gm,n = fm for all m ∈ N. According to
the definition of fm, we see that on each interval [−K,K],
the sequence {gm,n}m∈N of elementary computable functions

converges uniformly to the zero function. For K ∈ N and
M ∈ N, we have for m ≥ κ(M,K) that

max
|t|≤K

|gm,n(t)− 0| = max
|t|≤K

|fm(t)| < 1

π(m−K)

<
1

m−K
≤ 1

K + 1 + 2M −K
<

1

2M
. (21)

Thus, for each interval [−K,K], the sequence {gm,n}m∈N of
elementary computable functions converges effectively to the
zero function. We denote this limit function by g∗n ∈ LCB∞π,0.
Note that the convergence is effective in K.

Now, let n ∈ A. Let m̂ denote the natural number for which
φA(m̂) = n. Further, let K ∈ N and M ∈ N, as well as
m ≥ κ(M,K). If n ∈ {φA(1), . . . , φA(m)} then we have
gm,n = fm̂. It follows that

max
|t|≤K

|gm,n(t)− fm(t)| = 0 <
1

2M
.

If n 6∈ {φA(1), . . . , φA(m)}, i.e., if m < m̂, then we have
gm,n = fm. It follows that

max
|t|≤K

|gm,n(t)− fm̂(t)| = max
|t|≤K

|fm(t)− fm̂(t)|

<
1

π(m−K)
+

1

π(m̂−K)

≤ 2

π(m−K)
<

1

m−K

≤ 1

K + 1 + 2M −K
<

1

2M
. (22)

Thus, for each interval [−K,K], the computable double se-
quence {gm,n}m∈N of elementary computable functions con-
verges effectively to fm̂. Again, we denote this limit function
by g∗n ∈ LCB∞π,0. Note that, as before, the convergence is
effective in K.

Since (21) and (22) do not depend on n, the convergence
of {gm,n}m∈N is also effective in n. It follows that {g∗n}n∈N
is a computable sequence of functions in LCB∞π,0.

The sequence {ψ(g∗n)}n∈N is a sequence of numbers that
satisfies ψ(g∗n) ∈ {0, 1} for all n ∈ N. We do a proof by
contradiction and assume that {ψ(g∗n)}n∈N is a computable
sequence. Let n ∈ N be arbitrary. If n ∈ A then we have
g∗n = fm̂ and it follows that ‖g∗n‖∞ = ‖fm̂‖∞ = 1. If n 6∈ A
then we have g∗n ≡ 0 and therefore ‖g∗n‖∞ = 0. For every
n ∈ N, we can algorithmically check whether the computable
number ψ(g∗n) is larger or smaller than 1/2. If ψ(g∗n) > 1/2
then we have n ∈ A. And if ψ(g∗n) < 1/2 then we have n 6∈
A. Hence, we have an algorithm that can determine whether
n ∈ A or n 6∈ A, which implies that A is a recursive set. This
is a contradiction. Hence, our assumption was wrong, and it
follows that {ψ(g∗n)}n∈N is not a computable sequence, which
in turn implies that ψ : LCB∞π,0 → Rc is not Banach–Mazur
computable.

The proof of Theorem 10 further leads us to the next
theorem, the counterpart of Theorem 9, where we showed that
S> = {f ∈ LCB∞π,0 : ‖f‖∞ > λ} is semi-decidable.
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Theorem 11. For all λ ∈ Rc, λ > 0, the set

S< = {f ∈ LCB∞π,0 : ‖f‖∞ < λ}

is not semi-decidable.

Proof. We do a proof by contradiction and assume that there
exists a λ̂ ∈ Rc, λ̂ > 0 such that the set

{f ∈ LCB∞π,0 : ‖f‖∞ < λ̂}

is semi-decidable. We use the same functions fn, n ∈ N that
were defined in (20) in the proof of Theorem 10, and consider
the sequence {2λ̂fn}n∈N, which is a computable sequence of
functions in LCB∞π,0. Let A ⊂ N be an arbitrary recursively
enumerable non-recursive set and φA : N → A a recursive
enumeration of A, where φA is an injective function. We use
the same functions g∗n, n ∈ N that were defined in the proof
of Theorem 10, and consider the sequence {λ̂g∗n}n∈N, which
is a computable sequence of functions in LCB∞π,0.

We define a Turing machine TMA by starting two Turing
machines in parallel. We start a Turing machine TM1(n) that
checks for n if there exists a m̂ such that n = φA(m̂).
That is, we compute, for m = 1, 2, . . . , the sets Am =
{φA(1), . . . , φA(m)} and check if n ∈ Am. If so, we stop
the Turing machine TM1. If not, we let the Turing machine
run. This Turing machine stops if and only if n ∈ A.
According to our assumption there exists a Turing machine
TM2 : LCB∞π,0 → {stops, runs forever} that stops if and only
if f ∈ {f ∈ LCB∞π,0 : ‖f‖∞ < λ̂}. Parallel to TM1, we start
the Turing machine TM2(λ̂g∗n). This Turing machine stops if
and only if ‖λ̂g∗n‖∞ < λ̂, or, according to the definition of
g∗n, if and only if n 6∈ A. We see that eventually either TM1

or TM2 will stop. If TM1 stops then we have n ∈ A, and
if TM2 stops we have n 6∈ A. The result is reported by the
Turing machine TMA. Hence, the Turing machine TMA can
determine for arbitrary n ∈ N whether n ∈ A or n 6∈ A. This
implies that A is a recursive set, which is a contradiction.

Next, we study the domain of the signals and ask whether
for all locally computable signals it is possible to algorith-
mically determine an interval on which the maximum of the
signal is attained. For all f ∈ B∞π,0 there exists a natural
number K0 such that

max
|t|≤K0

|f(t)| = ‖f‖∞.

Further, for f ∈ LCB∞π,0, there always exists a t̂ ∈ Rc, such
that

‖f‖∞ = |f(t̂)|. (23)

For the existence of such a t̂ ∈ Rc, see for example [17].
The question that we ask now is: Can we construct a Turing
machine TMup : LCB∞π,0 → Rc that, for each f ∈ LCB∞π,0,
computes an upper bound for |t̂|, i.e., a number t such that
|t̂| ≤ t, where t̂ is a number satisfying (23). The next theorem
answers this question in the negative.

Theorem 12. There exists no Turing machine
TMup : LCB∞π,0 → Rc that, for every f ∈ LCB∞π,0, computes
a t = TMup(f), such that ‖f‖∞ = max|t|≤t|f(t)|.

Remark 8. It is interesting that such a Turing machine TMup
does not exist. The goal to compute an upper bound for the
time instant where the given signal attains its maximum, is
weaker than the goal to compute the peak value itself or the
time instant where the maximum is attained. In the following
proof we will see that if we could find a Turing machine
TMup that solves the above problem, then there would exist
a Turing machine that could compute ‖f‖∞ for every input
f ∈ LCB∞π,0.

Proof of Theorem 12. We do a proof by contradiction and
assume that such a Turing machine TMup exists. Using this
Turing machine, we can compute t = TMup(f). We have
‖f‖∞ = max|t|≤t|f(t)|, and it follows that there exists a
Turing machine TM1 : LCB∞π,0 → Rc to compute ‖f‖∞. The
Turing machine TM1 uses TMup as a subroutine that computes
t = TMup(f). The remaining task for TM1 is to compute and
output the maximum of f on the interval [−t, t], which is equal
to ‖f‖∞. However, such a Turing machine TM1 cannot exist
according to Theorem 10.

As already mentioned in the introduction, for many prob-
lems in information and signal processing it has recently been
shown that they cannot always be solved algorithmically on a
digital computer. Examples are the computation of the Fourier
transform [20], the bandlimited interpolation [21], the Wiener
filter [23], and even the bandwidth of computable bandlimited
signals [35]. In all these examples, it turned out that the
key quantities themselves, such as the bandwidth, are not
computable.

The question arose, whether this is a general phenomenon
that holds for all signal processing problems or whether there
exists interesting signal processing problems, where the key
quantity is a computable number, but this number cannot be
algorithmically derived from the signal. The above problems
of computing the peak value for signals in LCB∞π,0 and of
finding upper bounds have exactly this property. For each
signal f ∈ LCB∞π,0 it is possible to find an algorithm, i.e.,
a Turing machine TMf that computes ‖f‖∞. This is possible
because ‖f‖∞ ∈ Rc, and hence, according to the definition
of a computable number, an algorithm has to exist for the
computation of ‖f‖∞. However, this algorithm does not
depend recursively on f , i.e., there exists no universal Turing
machine that can compute ‖f‖∞ for every signal f ∈ LCB∞π,0.

In Theorem 5, Section VII, we constructed a signal
f1 ∈ B∞π,0 with f1|Z ∈ Cc0 such that ‖f1‖∞ 6∈ Rc or
arg maxt∈R f1(t) 6∈ Rc. This implies that f1 6∈ CB∞π,0. We
next show that, for f ∈ B∞π,0 with f |Z ∈ Cc0 and ‖f‖∞ ∈ Rc,
we do not necessarily have f ∈ CB∞π,0, i.e, f ∈ CB∞π,0 is not
a necessary condition for the computability of the peak value
‖f‖∞.

Theorem 13. There exists a signal f2 ∈ B∞π,0 such that
1) f2|Z ∈ Cc0,
2) f2 6∈ CB∞π,0,
3) ‖f2‖∞ ∈ Rc.

Remark 9. The signal f2 in Theorem 13, which will be
constructed in the proof, is an explicit example of a signal
that is in LCB∞π,0 but not in CB∞π,0.
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Proof of Theorem 13. We use the function f3 from Corol-
lary 2, for which we already know from Remark 6 that
f3 6∈ CB∞π,0. Further, we know that f3|Z ∈ Cc0. It remains to
show that ‖f3‖∞ ∈ Rc. To this end, we use the representation

f3(t) =
∞∑
n=1

1

2φA(n)

gn(t−Nn)

C(n)
, t ∈ R, (24)

from the proof of Corollary 2. The series on the right-hand side
of (24) converges effectively to f3 on all intervals [−M,M ],
M ∈ N. Since{

N∑
n=1

1

2φA(n)

gn( · −Nn)

C(n)

}
N∈N

.

is a computable sequence of functions in CB∞π,0, it follows that
f3 is a locally computable function in LCB∞π,0. Since f3 ∈
LCB∞π,0, we obtain from Theorem 8 that ‖f3‖∞ ∈ Rc.

X. SEMI-DECIDABILITY OF THE PEAK VALUE PROBLEM
ON A NYQUIST SET

Nowadays, the simulation of physical models and technical
systems on digital computers is a standard method in research
and development. However, as we have seen there exist signals
and operations that cannot be computed algorithmically on
a digital computer. In these cases, simulations cannot be
used or give meaningless results, because it is impossible to
assess how close the simulation output is to the real output.
Modern simulations software usually contains functionality
to assess the quality of the simulation. For example, tests
can be executed to analyze the quality of the input data, the
behavior of critical parameters during the simulation, and the
confidence of the computed result. In some software packages
such as MATLAB these kinds of checks are implemented in
the form of exit flags, which indicate possible problems during
the computation.

As for the peak value computation, we have seen that there
exist signals, for which it is not possible to compute the
peak value. In this section we study whether it is possible
to determine the problematic signals algorithmically, i.e., to
implement an exit flag for these input signals. To this end,
we consider certain subsets of Cc0, and use the concept of
semi-decidability. The computation of an exit flag for the
computability of the peak value ‖f‖∞ is illustrated in Fig. 5.

For a sequence x ∈ c0, let fx ∈ B∞π,0 denote the bandlimited
interpolation of x, i.e., the signal f ∈ B∞π,0 that satisfies
fx(k) = x(k) for all k ∈ Z, if it exists. For us the three
sets

M1 = {x ∈ Cc0 : fx ∈ B∞π,0 and fx( 1
2 ) ∈ Cc},

M2 = {x ∈ Cc0 : fx ∈ B∞π,0 and fx( 1
2 ) 6∈ Cc},

and

M3 = {x ∈ Cc0 : fx ∈ CB∞π,0}

are interesting. We immediately see that M1 = Cc0 \ M2,
M2 ∩M2 = ∅, and M3 ⊂M1.

TM1

Is ‖f‖∞
computable?

x

TM2

Compute
‖f‖∞

yes

no

TM1 runs forever

x

ε
‖f‖∞

Fig. 5. Exit flag for the computability of the peak value ‖f‖∞.

A set M ⊆ Cc0 is called semi-decidable if there exists a
Turing machine

TM : Cc0 → {TM stops, TM runs forever}

that, given an input x ∈ Cc0, stops if and only if x ∈M.

Theorem 14. The subsets M1, M2, and M3 of Cc0 are not
semi-decidable.

Before we can prove Theorem 14, we need to introduce the
concept of a computable family of sequences in Cc0. We call a
family {xλ}λ∈[0,1]∩Rc of sequences in Cc0 a computable fam-
ily of sequences in Cc0 if there exist a computable sequence
{ψk}k∈Z of computable continuous functions ψk : [0, 1]→ Cc
and a recursive function ξ : N→ N, such that, for all M ∈ N,
we have

‖xλ − xNλ ‖`∞ ≤
1

2M

for all N ≥ ξ(M), where

xNλ (k) =

{
ψk(λ), |k| ≤ N,
0, |k| > N.

Remark 10. A family {xλ}λ∈[0,1]∩Rc ⊂ Cc0 is a computable
family if we can find an algorithm that obtains M ∈ N and
λ ∈ [0, 1] ∩ Rc as inputs and then generates as output a
yM,λ ∈ c0 with only finitely many non-zero elements such that
‖xλ − yM,λ‖`∞ ≤ 2−M . The so constructed output depends
effectively on M and λ ∈ [0, 1] ∩Rc. This can be interpreted
as follows. If {xλ}λ∈[0,1]∩Rc ⊂ Cc0 is a computable family
of sequences in Cc0 then there exists a Turing machine
TM : [0, 1] ∩Rc → Cc0 with TM(λ) = xλ, i.e., TM generates
a description of xλ from a description of λ.

Proof of Theorem 14. We first show that M3 is not semi-
decidable. From Theorem 3 we know that M2 is non-empty.
Let x1 ∈ M2 be arbitrary. Further, let x0 ∈ Cc0 be the
sequence x0(k) = 0 for all k ∈ Z. We have fx0

(t) = 0,
t ∈ R, and thus x0 ∈M3. For λ ∈ [0, 1] ∩ Rc, we consider

xλ(k) = (1− λ)x0(k) + λx1(k)

= λx1(k), k ∈ Z.

Since x1 ∈ Cc0, there exists a computable sequence
{x1,n}n∈N ⊂ c0 where each x1,n has only finitely-many non-
zero elements, and a recursive function ξ such that for all
M ∈ N we have

‖x1 − x1,n‖`∞ ≤ 2−M

for all n ≥ ξ(M). Let

xλ,n(k) = λx1,n(k), k ∈ Z.
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Then, for all λ ∈ [0, 1] ∩ Rc and all M ∈ N, we have

‖xλ − xλ,n‖`∞ = λ‖x1 − x1,n‖`∞

≤ 1

2M

for all n ≥ ξ(M). Hence, we see that {xλ}λ∈[0,1]∩Rc is a
computable family of sequences in Cc0.

Now we prove that M3 is not semi-decidable using
an indirect proof. We assume that M3 is semi-decidable,
i.e., that there exists a Turing machine TMM3 : Cc0 →
{TMM3 stops, TMM3 runs forever} that, given an input x ∈
Cc0, stops if and only if x ∈ M3, and show that this
assumption leads to a contradiction. There exists a Turing
machine TM>

0 : Rc → {stops, runs forever} such that, for each
input λ ∈ Rc, TM>

0 (λ) stops if and only if λ > 0 [17, p. 14,
Proposition 0]. Now we construct a Turing machine TM(λ)
with input λ ∈ [0, 1] ∩ Rc as follows. First, TM computes
xλ, which is possible, since {xλ}λ∈[0,1]∩Rc is a computable
family of sequences in Cc0. Second, TM starts the two Turing
machines TM>

0 (λ) and TMM3
(xλ) in parallel. Exactly one

of the two Turing machines will stop. TM>
0 (λ) will stop if

and only if λ > 0, and TMM3(xλ) will stop if and only if
λ = 0, because xλ ∈M3 if and only if λ = 0. The output of
TM is 0 if TMM3

(xλ) stops, and 1 if TM>
0 (λ) stops. Hence,

TM is a Turing machine that can decide whether the input
λ ∈ [0, 1] ∩ Rc is equal to zero or larger than zero. This is a
contradiction because such a Turing machine cannot exist [17,
p. 14, Proposition 0]. Thus, M3 is not semi-decidable.

The proof for M1 is done analogously as the proof for the
set M3, because for x0 we also have x0 ∈M1.

Next, we show that M2 is not semi-decidable. Again, we
use an indirect proof and assume that M2 is semi-decidable,
i.e., that there exists a Turing machine TMM2 : Cc0 →
{TMM2

stops, TMM3
runs forever} that, given an input x ∈

Cc0, stops if and only if x ∈ M2. Let x1 ∈ M2 be arbitrary
and consider, for ε ∈ [0, 1] ∩ Rc,

xε(k) = x1(k)ε|k|.

We have xε(k) ∈ Cc for all k ∈ Z. For ε = 1, we have

xε(k) = x1(k), k ∈ Z,

i.e., xε ∈M2. For ε ∈ [0, 1) ∩ Rc, we have∣∣∣∣∣fxε( 1
2 )−

N∑
k=−N

x1(k)ε|k|
sin(π( 1

2 − k))

π( 1
2 − k)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|k|>N

x1(k)ε|k|
sin(π( 1

2 − k))

π( 1
2 − k)

∣∣∣∣∣∣
≤ ‖x1‖`∞

∑
|k|>N

ε|k|

= 2‖x1‖`∞
εN+1

1− ε
.

Since {
N∑

k=−N

x1(k)ε|k|
sin(π( 1

2 − k))

π( 1
2 − k)

}
N∈N

is a computable sequence of computable numbers, we see that
fxε(1/2) ∈ Cc, and consequently that xε ∈ M1. We now
show that {xε}ε∈[0,1]∩Rc is a computable family in Cc0. To
this end, we consider

ψk(ε) = x1(k)ε|k|.

{ψk}k∈Z is a computable sequence of computable continuous
functions ψk : [0, 1]→ Cc. We choose

xNε (k) =

{
ψk(ε), |k| ≤ N,
0, |k| > N.

Since x1 ∈ Cc0, there exist a computable sequence
{x1,n}n∈N ⊂ c0, where each x1,n has only finitely many
non-zero elements, and a recursive function ξ : N → N, such
that for all M ∈ N we have ‖x1 − x1,n‖`∞ ≤ 2−M for all
n ≥ ξ(M). For all M ∈ N and all ε ∈ [0, 1] ∩ Rc we have

|xε(k)− xNε (k)| = |x1(k)ε|k| − xN1 (k)ε|k||
= ε|k||x1(k)− xN1 (k)|
≤ |x1(k)− xN1 (k)|
≤ ‖x1 − xN1 ‖`∞

≤ 1

2M

for all k ∈ Z and all N ≥ ξ(M). This shows that
{xε}ε∈[0,1]∩Rc is a computable family in Cc0. We already have
shown that, for all ε ∈ [0, 1)∩Rc, we have xε ∈M1 and, for
ε = 1, xε = x1 ∈M2.

Next, we construct a Turing machine TM(ε) with input ε ∈
[0, 1]∩Rc as follows. First, TM computes xε, which is possible
because {xε}ε∈[0,1]∩Rc is a computable family in Cc0. Second,
TM starts the two Turing machines TM<

1 (ε) and TMM2
(xε) in

parallel. Exactly one of the Turing machines will stop. TM<
1 (ε)

will stop if and only if ε < 1, and TMM2
(xε) will stop if and

only if ε = 1, because xε ∈M2 if and only if ε = 1. However,
such a Turing machine cannot exist [17, p. 14, Proposition 0].
This shows that M2 is not semi-decidable.

XI. CONCLUSION

The peak value problem is an important problem, especially
in communications, where we have to control the peak value
of the transmit signal. In this work we analyzed whether
certain questions regarding the peak value problem and the
decay behavior can be answered algorithmically, i.e., on a
digital computer. In the case of oversampling it is possible
to compute the peak value of a bandlimited signal from its
samples. However, if no oversampling is used, this is no longer
possible in general. This shows that there are limitations in
what can be computed on digital machine. For a more relaxed
concept of computability, local computability, it is not even
possible to always decide algorithmically whether the peak
value of a signal is below a certain threshold.

The question of computability and the limitations of digital
machines are usually not addressed in signal processing books
and publications. If a certain value is not computable, then
we cannot algorithmically control the error that is made in the
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approximation. As we have shown, this can be the case in the
peak value computation of a continuous-time signal.

We also have seen that, for locally computable signals f ,
we always have ‖f‖∞ ∈ Rc, but there exists no single Turing
machine that can compute ‖f‖∞ for every locally computable
signal f as input to the Turing machine. This is an interesting
example of a problem where the key quantity is a computable
number, but where there exists no universal Turing machine
that is capable of computing this number for all inputs.

It would be desirable to algorithmically identify the critical
signals, for which computability problems exist, in order to
filter them out before the actual computation begins. Unfortu-
nately, such an exit flag functionality for detecting computabil-
ity problems cannot exist, because the corresponding signal
sets are not semi-decidable.

REFERENCES

[1] H. Boche and U. J. Mönich, “Computability of the peak value of ban-
dlimited signals,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’20), May 2020,
pp. 5280–5284.

[2] F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary,
J. Sevic, and N. Sokal, “Power amplifiers and transmitters for RF and
microwave,” IEEE Transactions on Microwave Theory and Techniques,
vol. 50, no. 3, pp. 814–826, Mar. 2002.

[3] S. Litsyn, Peak Power Control in Multicarrier Communications. Cam-
bridge University Press, 2012.

[4] G. Wunder, R. F. Fischer, H. Boche, S. Litsyn, and J.-S. No, “The
PAPR problem in OFDM transmission: New directions for a long-lasting
problem,” IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 130–
144, Nov. 2013.

[5] T. Jiang, M. Guizani, H.-H. Chen, W. Xiang, and Y. Wu, “Derivation of
PAPR distribution for OFDM wireless systems based on extreme value
theory,” IEEE Transactions on Wireless Communications, vol. 7, no. 4,
pp. 1298–1305, Apr. 2008.

[6] C. Siegl and R. F. H. Fischer, “Asymptotic performance analysis and
successive selected mapping for PAR reduction in OFDM,” IEEE
Transactions on Signal Processing, vol. 58, no. 6, pp. 3228–3237, Jun.
2010.

[7] B. S. Krongold and D. L. Jones, “An active-set approach for OFDM PAR
reduction via tone reservation,” IEEE Transactions on Signal Processing,
vol. 52, no. 2, pp. 495–509, Feb. 2004.

[8] A. Aggarwal and T. H. Meng, “Minimizing the peak-to-average power
ratio of OFDM signals using convex optimization,” IEEE Transactions
on Signal Processing, vol. 54, no. 8, pp. 3099–3110, Aug. 2006.

[9] N. Chen and G. T. Zhou, “Superimposed training for OFDM: a peak-to-
average power ratio analysis,” IEEE Transactions on Signal Processing,
vol. 54, no. 6, pp. 2277–2287, Jun. 2006.

[10] T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction
techniques for OFDM signals,” IEEE Transactions on Broadcasting,
vol. 54, no. 2, pp. 257–268, Jun. 2008.

[11] C. Li, T. Jiang, Y. Zhou, and H. Li, “A novel constellation reshaping
method for PAPR reduction of OFDM signals,” IEEE Transactions on
Signal Processing, vol. 59, no. 6, pp. 2710–2719, Jun. 2011.

[12] S.-H. Wang, C.-P. Li, K.-C. Lee, and H.-J. Su, “A novel low-complexity
precoded OFDM system with reduced PAPR,” IEEE Transactions on
Signal Processing, vol. 63, no. 6, pp. 1366–1376, Mar. 2015.

[13] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, vol. s2-42, no. 1, pp. 230–265, Nov. 1936.

[14] ——, “On computable numbers, with an application to the Entschei-
dungsproblem. A correction,” Proceedings of the London Mathematical
Society, vol. s2-43, no. 1, pp. 544–546, Jan. 1937.

[15] K. Weihrauch, Computable Analysis: An Introduction. Springer-Verlag,
2000.

[16] G. S. Boolos, J. P. Burgess, and R. C. Jeffrey, Computability and Logic.
Cambridge University Press, 2002.

[17] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics.
Springer-Verlag, 1989.

[18] J. Avigad and V. Brattka, “Computability and analysis: the legacy of
Alan Turing,” in Turing’s Legacy: Developments from Turing’s Ideas in
Logic, R. Downey, Ed. Cambridge University Press, 2014.

[19] H. Boche and U. J. Mönich, “On the Fourier representation of com-
putable continuous signals,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’19),
May 2019, pp. 5013–5017.

[20] ——, “Turing computability of Fourier transforms of bandlimited and
discrete signals,” IEEE Transactions on Signal Processing, vol. 68, pp.
532–547, Jan. 2020.

[21] ——, “Downsampling of bounded bandlimited signals and the ban-
dlimited interpolation: Analytic properties and computability,” IEEE
Transactions on Signal Processing, vol. 67, no. 24, pp. 6424–6439, Dec.
2019.

[22] ——, “Effective approximation of bandlimited signals and their sam-
ples,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’20), May 2020, pp. 5590–5594.

[23] H. Boche and V. Pohl, “On the algorithmic solvability of spectral fac-
torization and applications,” IEEE Transactions on Information Theory,
2020, in press.

[24] V. W. S. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang, Eds., Key
Technologies for 5G Wireless Systems. Cambridge University Press,
2017.

[25] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis –
Foundations. Oxford University Press, 1996.

[26] R. I. Soare, Recursively Enumerable Sets and Degrees, ser. Perspectives
in Mathematical Logic. Springer-Verlag Berlin Heidelberg, 1987.

[27] E. Specker, “Nicht konstruktiv beweisbare Sätze der Analysis,” The
Journal of Symbolic Logic, vol. 14, no. 3, pp. 145–158, Sep. 1949.

[28] H. Boche and G. Wunder, “Über eine Verallgemeinerung eines Resultats
von Riesz über trigonometrische Polynome auf allgemeine bandbegren-
zte Funktionen,” Zeitschrift für angewandte Mathematik und Mechanik
(ZAMM), vol. 82, no. 5, pp. 347–351, May 2002.

[29] G. Wunder and H. Boche, “Peak value estimation of bandlimited signals
from their samples, noise enhancement, and a local characterization
in the neighborhood of an extremum,” IEEE Transactions on Signal
Processing, vol. 51, no. 3, pp. 771–780, Mar. 2003.

[30] H. Al-Hammali and A. Faridani, “The zeros of a sine-type function and
the peak value problem,” Signal Processing, vol. 167, p. 107274, Feb.
2020.

[31] H. Boche and U. J. Mönich, “Peak to average power control via
tone reservation in general orthonormal transmission systems,” IEEE
Transactions on Signal Processing, vol. 66, no. 13, pp. 3520–3528, Jul.
2018.

[32] ——, “Optimal tone reservation for CDMA systems,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 23, pp. 6216–6227, Dec. 2018.

[33] J. Ilic and T. Strohmer, “PAPR reduction in OFDM using Kashin’s
representation,” in Proceedings of the 2009 IEEE 10th Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), Jun.
2009, pp. 444–448.
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